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INFLUENCE OF SEPARATION ON SOUND
GENERATED BY VORTEX-STEP INTERACTION
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An analysis of the sound produced when a line vortex interacts at low Mach number with
forward or backward facing steps is made. The radiation is dominated by an aeroacoustic
dipole whose strength is equal to the unsteady drag on the step. The drag is determined by the
vorticity distribution, and a correct estimate of the sound must therefore include contributions
from vorticity in the separated flow induced by the vortex. The separation is modelled by
assuming that the shed vorticity rolls up into a concentrated core, fed by a connecting sheet
from the edge of the step of negligible circulation. The motion everywhere is irrotational except
at the impinging vortex and the separation core, and the trajectory of the core is governed by an
emended Brown & Michael equation. For large steps it is found that estimates of the generated
sound that neglect separation are typically an order of magnitude too large. The sound levels
predicted for small steps with and without separation are of comparable magnitudes, although
the respective phases are different. ¹urbulent flow over a step frequently involves separation and
large surface pressure fluctuations at reattachment zones. The results of this paper suggest that
numerical schemes for determining the noise generated by turbulent flow over a step must take
proper account of ‘‘forcing’’ of the separation region by the impinging turbulence and of
vorticity production via the no-slip condition.
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1. INTRODUCTION

BOUNDARY LAYER TURBULENCE and other flow inhomogeneities can promote unsteady separ-
ation from structural irregularities, such as rivet heads, lap-joints, cutouts, etc. The unsteady
drag exerted on the irregularity is equivalent to a localized aeroacoustic dipole, and
is responsible for the production of both sound and structural vibration. Lap-joints
(or ‘‘skin steps’’) occur at junctions of neighbouring panels on an aircraft fuselage, and
are a possible source of boundary-layer-generated interior cabin noise, either because
they enhance downstream wall pressure fluctuations and drive vibrations of the cabin
walls, or because the drag dipole is a direct source of sound and vibration (Efimtsov 1996;
Howe 1997).

Irregularities in the form of forward or backward facing steps have been studied
extensively (Bradshaw & Wong 1972; Moss & Baker 1980; Chandrsuda & Bradshaw 1981;
Eaton & Johnston 1981; Farabee & Casarella 1984, 1986, 1988) because their free shear
layers possess well-defined separation and reattachment zones. More generally, reattach-
ment occurs downstream of a stagnation point, and is a region of high-fluctuating wall
89-9746/97/080857#16 $25.00/fl970113 ( 1997 Academic Press Limited
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pressure, where free shear layer eddies bifurcate into upstream and downstream travelling
components (Bradshaw & Wong 1972). According to Farabee & Casarella (1984, 1986),
low Mach number turbulent wall pressures at reattachment for backward and forward
facing steps (with step heights comparable to the boundary-layer thickness) are,
respectively, about 5 and 10 times larger than the smooth wall boundary-layer pressures.
The wall pressure must ultimately revert to that of a smooth wall boundary layer,
but differences have been observed at distances as large as 72 step heights downstream
of the step.

The large changes in the boundary-layer structure at a step must be carefully modelled to
obtain accurate estimates of the sound produced by the boundary-layer—step interaction.
For example, in low-to-moderate Mach number flows, the unsteady drag (which is the
dipole source strength) is determined by the vorticity distribution near the step (Howe
1989a, 1995), which includes vorticity in the impinging flow together with any produced by
the interaction and ‘‘trapped’’ in the recirculating separation bubble. Hitherto, theoretical
predictions of the generated sound [e.g. Conlisk & Veley (1985); Dhanak & Gundlapalli
(1992); Howe (1989b, 1997)] have tended to ignore separation and vorticity production.
Conlisk & Veley (1985) and Dhanak & Gundlapalli (1992) represented the impinging
inhomogeneous flow by an assembly of line (or point) vortices, whose motions over a large
step (comparable in size to the boundary-layer thickness) were determined from inviscid
equations of motion. Howe (1989b, 1997) considered ‘‘small’’ steps, and calculated the sound
as a by-product of the scattering of the boundary-layer pressure field, which was assumed to
be frozen during convection over the step.

In this paper, we assess the accuracy of these inviscid approximations from an analysis of
the interaction of a single line vortex with a forward or backward facing step. Separation is
modelled by assuming that the vorticity shed during the interaction rolls up into a concen-
trated core, which grows in strength by the passage of continuously shed vorticity along
a connecting sheet from the edge of the step. The motion is irrotational everywhere except at
the impinging vortex and the core of the shed vorticity, and the trajectory of the core is
determined by the emended Brown & Michael equation (Brown & Michael 1954, 1955;
Howe 1996). For large steps, it is concluded that estimates of the sound that neglect
separation are typically an order of magnitude too large. This is because the calculated drag
on the step is greatly overestimated when the potential theory singularity at the edge of the
step is not suppressed by vortex shedding. For small steps, predicted sound levels with and
without separation are of comparable magnitudes, but exhibit large differences in phase.

The aerodynamic sound problem is formulated in Section 2 for low Mach, self-induced
vortex motion over forward or backward facing steps on a plane wall. Numerical predic-
tions of the sound are presented in Section 3.

2. THE AERODYNAMIC SOUND PROBLEM

2.1. FORMULATION

A line vortex of circulation C
0
'0 is in translational motion adjacent to a rigid wall.

The vortex is parallel to the z-axis of the rectangular coordinate system (x, y, z) and the wall
is parallel to the plane y"0, except for a ‘‘vertical’’ step of height h, whose foot coincides
with the z-axis. To fix ideas, consider the forward-facing step illustrated schematically in
Figure 1, where the coordinate origin is at O, and the fluid and vortex lie in the region y*0
‘‘above’’ the wall.



Figure 1. Configuration of the incident and shed vortices for a forward-facing step.
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In the undisturbed state the fluid is at rest, and is inviscid except that vortex shedding is
permitted from the right-angled edge S of the step to remove the singular velocity and
pressure that would otherwise occur. Vortex shedding is uniform along the step, and is
modelled by a line vortex of variable strength C (t) (t denoting time) whose axis intersects the
plane z"0 at (x, y)"xC(t), and translates at velocity dxC/dt,V. The vortex strength
increases as shed vorticity is continuously ‘‘fed’’ along a connecting sheet from S. The
circulation of the connecting sheet is assumed to be negligible compared to C. This model of
vortex shedding, involving a time-dependent core C containing all of the shed vorticity,
includes a spurious pressure jump across the connecting sheet, which is countered by
requiring the translational velocity V to be different from the fluid velocity v at the core
(Brown & Michael 1954, 1955). C (t) is assumed to vary monotonically until the vortex is
finally ‘‘released’’ from S when dC/dt changes sign. The ‘‘free’’ vortex (with no connecting
sheet) then proceeds to convect with the fluid at velocity v, and a new vortex is released from
S. In the present discussion, dC/dt turns out to be one-signed during the dominant
interaction of the incident vortex C

0
with the step.

Let (x
0
, y

0
) be the position of the incident vortex in the plane z"0 at time t. The vorticity

x can then be written

x"X
0
#X,

X
0
"C

0
kd(x!x

0
(t))d (y!y

0
(t)),

X"C (t)kd (x!xC(t))d (y!yC(t)), (2.1)



860 M. S. HOWE
where k"(0, 0, 1) is a unit vector in the z-direction (out of the plane of the paper in
Figure 1). For an ideal fluid the momentum equation is

Lv

Lt
#$AP

dp

o
#

1

2
v2B"!x??v#

F

o
, (2.2)

where p and o are, respectively, the pressure and density, and for two-dimensional motion
v"(u, v, 0). F is the distributed force

F"oX??(v!V)!o
dC

dt
nd (xo)H (sC!s), s'0, (2.3)

where xo is distance from the connecting sheet measured in the direction of the local normal
n of Figure 1, sC is the length of the sheet (between S and C), and s is distance measured along
the sheet from S. The first term on the righthand side of equation (2.3) is concentrated at the
core of the shed vortex, and is equal and opposite to the Joukowski lift on C which arises
when VOv; the second term represents the pressure force across the connecting sheet
(Howe 1996).

2.2. EQUATIONS OF MOTION OF THE VORTICES

The incident vortex is ‘‘free’’ and translates at the fluid velocity v (x, y, t) evaluated at its core,

dx
0

dt
"v (x

0
, y

0
, t). (2.4)

This velocity is calculated according to potential flow theory, and consists of a contribution
from the images of C

0
in the rigid wall and from the shed vortex C and its images.

Brown & Michael (1954, 1955) obtain the equation of motion of the shed vortex by
requiring the net force exerted on the fluid by the distribution F"(F

x
, F

y
) to vanish.

Performing the integration : F
y
dx/dy for the y-component of equation (2.3), this condition

yields

dxC

dt
#

xC

C
dC
dt

"u (xC , yC , t). (2.5)

For the horizontal (x-) component, however, it is not sufficient to require : F
x
dx dy"0,

since the surface reaction to the remaining unbalanced couple (:x??Fdxdy) produces an
additional unsteady drag on the step. In this case, it is necessary to impose the condition
that the net horizontal force on the fluid due to F and its interaction with the step is zero.
This is done by requiring the path of the shed vortex to satisfy (Howe 1996)

P F ·$X dxdy"0, (2.6)

where X,X (x, y) is a harmonic function that depends only on the shape of the step, and is
equal to the velocity potential of ideal, incompressible flow past the step that has unit speed
in the x-direction at large distances from the step. Equation (2.6) is expressed in differential
form by making use of the Cauchy—Riemann relations

LX/Lx"LW/Ly, LX/Ly"!LW/Lx, (2.7)
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where W is the stream-function conjugate to X. When W,0 on the wall, equation (2.6) is
equivalent to

dxC

dt
· $W#

W
C

dC
dt

"v ·$W, (x, y)"(xC , yC). (2.8)

This equation is reduced to the following simplified form by subtracting equation (2.5)
multiplied by LW/Lx:

dyC

dt
#

(W!xCWx
)

W
y

1

C
dC
dt

"v (xC , yC , t), (2.9)

where (W
x
, W

y
)"(LW/Lx, LW/Ly).

2.3. THE AERODYNAMIC SOUND

At low Mach numbers, the production of aerodynamic sound by the vorticity and force
distribution on the right-hand side of Equation (2.2) is governed by the inhomogeneous
wave equation (Howe 1975, 1996)

(L2/c2
0
Lt2!$2)B"div(x??v)!div(F/o

0
) (2.10)

where B,p/o
0
#1

2
v2 (the total enthalpy in isentropic flow) and o

0
, c

0
are, respectively, the

mean density and sound speed. In irrotational regions, the motion can be described by
a velocity potential / (x, t), and B,!L//Lt. Thus, at large distances from the step, where
the perturbed motion is small, the pressure p+o

0
B, and the solution of equation (2.10) can

be expressed in the form

p(x, t)+!P (o
0
x??v!F) (y, q) ·

LG

Ly
(x, y, t!q) d3ydq, y"(x@, y@, z@), (2.11)

where the integration is over the fluid and all times q. In this formula, G (x, y, t!q) is the
Green’s function with outgoing wave behaviour that has vanishing normal derivative on the
wall, i.e. the solution of equation (2.10) when the right-hand side is replaced by
d(x!y)d (t!q).

The characteristic wavelength of the generated sound is much larger than the step height
h when the Mach number is small, and G is then well represented by the compact
approximation (Howe 1989b).

G(x, y, t!q)+
d (t!q!Dx!Y D/c

0
)

4n Dx!Y D
#

d (t!q!Dx!Y1 D/c
0
)

4nDx!Y1 D
, Dx DPR,

Y"(X(x@, y@), y@, z@), Y1 "(X(x@, y@),!y@, z@). (2.12)

To use this formula in the general solution (2.11), it will be assumed that the effective
source region lies within the finite span !1

2
l(z(1

2
l, where l is small compared to the

dominant acoustic wavelengths. This approximation is not essential to the following
discussion, but corresponds more closely to conditions in practical problems, where the
radiation spreads three dimensionally rather than cylindrically. When end effects (from
z"$1 l) of the source distributions are ignored, the only nontrivial contributions to the
2
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radiation are supplied by the following approximation to G, obtained by taking the first
term in the expansion of equation (2.12) in powers of the retarded source position:

G (x, y, t!q)+
X (x@, y@) cos h

2nc
0
Dx D

d@(t!q!Dx D )/c
0
), (2.13)

where the prime on the d-function denotes differentiation with respect to time, and
h"cos~1(x/ Dx D ) is the angle between the observer direction in the acoustic far field and the
x-axis.

When this expression is substituted into the general solution (2.11), it follows from
equation (2.6) and the Cauchy—Riemann equations (2.7) that the contribution from F van-
ishes identically, and that the acoustic pressure can be written

p(x, t)+
o
0
l cos h

2nc
0
Dx D

d

dt
[(C

0
v · $W)x

0(t)
#(C(t)v ·$W)xC(t)

]
t~Dx D/c

0
, Dx DPR, (2.14)

where the notation implies that the terms in the square braces are evaluated at the retarded
time t!DxD/c

0
.

3. NUMERICAL RESULTS

3.1. VORTEX TRAJECTORIES

The vortex paths are determined by equation (2.4) for the incident vortex C
0

and equations
(2.5) and (2.9) for the shed vortex C. The irrotational velocity v is computed in the usual way,
by introducing the dimensionless complex variable

Z"

x

h
#i

y

h
,

and transforming the fluid region above the step onto the upper-half of the complex f-plane.
This is accomplished by the mapping

Z"

1

n
MJf2!1Gln(f#Jf2!1)N#

i

2
(1$1), Im f*0, (3.1)

where, here and henceforth, upper/lower signs are to be taken, respectively, for the
forward/backward facing step. The foot of the step O maps into the point f"G1, and the
top S maps into f"$1.

Let f
0
and fC denote the respective images in the f-plane of the incident and shed vortices.

At low Mach numbers, when the step is acoustically compact, the motion near the step may
be regarded as incompressible, with complex potential

w"

!iC
0

2n
[ln(f!f

0
)!ln(f!f*

0
)]#

!iC

2n
[ln(f!fC)!ln(f!f*C )], (3.2)

where the asterisk denotes the complex conjugate. The instantaneous value of C(t) is
determined from the Kutta condition that dw/dz should be finite at S, which is satisfied
provided dw/dfP0 as fP$1, respectively, for forward and backward facing steps. This
yields

C (t)

C
0

"!K
1GfC

1Gf
0
K
2

A
f
0
!f*

0
fC!f*CB , (3.3)

which implies that C and C
0

always have opposite signs.
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The velocity v(x
0
, y

0
, t) of the incident vortex, on the right-hand side of equation (2.4), is

calculated from the velocity potential (3.2) by first excluding the free-field self-potential
(!iC

0
/2n) ln(Z!Z

0
), where Z

0
"x

0
/h#iy

0
/h. In the f-plane, equation (2.4) is equivalent

to

df
0

d¹
"!i/F(f

0
) DCA

1

f*
0
!f

0

#

1

2(f2
0
!1)*B!

C
C
0
A

1

f*
0
!f*C

!

1

f*
0
!fCBD , (3.4)

where

¹"

nC
0
t

2h2
, F(f)"S

f$1

fG1
. (3.5)

Similarly, the velocity components u (xC , yC , t) and v (xC , yC , t) in the equations of motion
(2.5) and (2.9) of C are evaluated from equation (3.2) by excluding (!iC/2n) ln(Z!ZC),
ZC"xC/h#iyC/h. The stream function W"Im (hf/n), so that, in the f-plane, fC satisfies

dfC

d¹
#

F(fC)

Re[F(fC)]
(iIm (fC)#nRe(ZC)F*(fC))

1

C
dC
d¹

"!i DF (fC) DC
C

C
0
A

1

f*C!fC

#

1

2(f2C!1)*B!A
1

f*C!f*
0

!

1

f*C!f
0
BD , (3.6)

where Re(ZC) on the left-hand side is given in terms of fC by equation (3.1).
Equations (3.3)— (3.6) are solved numerically by assigning a large and negative initial

value to Re (f
0
) and adjusting the corresponding value of Im (f

0
) to make the stand-off

distance d, say, of the vortex C
0

from the wall equal to some prescribed initial value. The
starting value of fC is taken at some point close to the image f"$1 of the step top S; the
precise location depends on the integration step length, but does not critically affect the
solution, since C is very small when the shed vortex is close to S, and the starting errors
rapidly become negligible as the solution builds up with the approach of C

0
to the step.

A fourth-order Runge—Kutta procedure was used; the equations form a robust system and
no difficulty was experienced in achieving convergence.

3.2. ACOUSTIC PRESSURE

The acoustic pressure (2.14) may now be expressed in the form

p (x, t)+8n3o
0
º2MA

d

hB
3 l cos h

Dx D
d

d¹ CImA
df

0
d¹B#

C (¹ )

C
0

ImA
dfM C
d¹BD

t~Dx D/c
0

,

M"

º

c
0

, (3.7)

where dfM C/d¹ is proportional to the fluid velocity at the core of the shed vortex C (which is
the same as the vortex translation velocity V only when dC/dt"0) and is equal to the
right-hand side of equation (3.6) evaluated at the retarded position of C. The velocity
º,C

0
/4nd is the initial translational velocity (which is parallel to the wall) of the incident

vortex before its motion is affected by the step. The acoustic pressure is proportional to
o
0
º2M, which is typical of an aeroacoustic source of dipole type; the dipole strength is just

the unsteady drag exerted on the step during the interaction.
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3.3. THE FORWARD-FACING STEP

Consider first the hypothetical case of vortex motion and acoustic radiation in the absence
of vortex shedding (Conlisk & Veley 1985; Dhanak & Gundlapalli 1992). Only the incident
vortex C

0
is present; its trajectory is governed by equation (3.4) with C,0. The trajectory is

depicted in Figure 2(a) for d/h"1
2
, i.e. when the initial distance of the vortex from the wall is

half the step height. The points labelled along the path indicate the vortex position at
various nondimensional times ºt/h, where time is reckoned from the instant at which the
vortex passes the step (at x"0).

When ºt/hP!R (far from the step) the kinetic energy of the (incompressible) motion
per unit length of the vortex is equal to (o

0
C2
0
/4n) ln(d/r

0
), where r

0
is a length of the order of

the radius of the vortex core (Lamb 1932). In the absence of shedding, this energy is
conserved during interaction with the step, so that the distance of the vortex from the wall
ultimately returns to d after the interaction when ºt/h becomes large. Because of this, the
ratio ºt/h is approximately equal to the horizontal distance of the vortex from the step
measured in step heights.

The nondimensional acoustic pressure

p (x, t)

o º2M (d/h)3(l/ Dx D ) cos h
(3.8)
Figure 2. (a) Trajectory of the incident vortex in the absence of shedding for d/h"0)5. (b) Nondimensional
acoustic pressure p(x, t)/[o

0
º2M(d/h)3(l/ Dx D ) cos h]; [t]"t!Dx D/c

0
denotes the retarded time.

0



VORTEX—STEP INTERACTION 865
is plotted in Figure 2(b) as a function of the nondimensional retarded time º[t]/h,
[t]"t!Dx D/c

0
. Most of the sound is generated just prior to the arrival of the vortex at the

step, within a distance equal approximately to the step height h.
Figure 3 illustrates how this picture is dramatically changed when account is taken of

separation at the step. The incident vortex path is deflected sideways by the shed vortex
[Figure 3(a)], and the two vortices proceed away from the wall in a direction initially
inclined towards negative x. The times indicated on the trajectories correspond to those in
Figure 2, i.e. t"0 defines the instant at which the vortex C

0
would pass over the step in the

absence of shedding. The strength of the shed vortex increases as C
0

approaches the step
until its value at ºt/h"1 is about !1)2C . More details of the variation of C (t) are given
Figure 3. (a) Vortex trajectories when d/h"0)5. (b) ———, Nondimensional acoustic pressure
p(x, t)/[o

0
º2M(d/h)3(l/ Dx D) cos h]; f f f f f , acoustic pressure in the absence of shedding. The broken curves are

the separate contributions from the incident and shed vortices.

0



866 M. S. HOWE
below. It should be noted, however, that, because DC D'C
0

when ºt/h*1, the vortex pair
traverses a circular path which ultimately causes the vortices to return to the wall and
subsequently to separate at a ‘‘reattachment’’ point far to the right of the step. In more
realistic flows, in particular in the presence of mean flow over the step in the x-direction,
both the deflection distance away from the wall and the reattachment length would be much
smaller.

The sound pressure produced by this interaction is represented by the solid curve in
Figure 3(b). Also shown (dashed) are the acoustic pressures generated by the incident and
shed vortices, which correspond, respectively, to the first and second terms in the square
braces of equation (3.7). These separate contributions are both large, but of opposite sign,
and interfere to produce a net radiated sound pressure that is much weaker than in the
absence of shedding (shown dotted).
Figure 4. (a) Vortex trajectories when d/h"1. (b) ———, Nondimensional acoustic pressure
p(x, t)/[o

0
º2M(d/h)3(l/ Dx D) cos h]; f f f f f , acoustic pressure in the absence of shedding. The broken curves are

the separate contributions from the incident and shed vortices.
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When the initial stand-off distance of C
0

increases to d"h, Figure 4 shows that the
trajectories and the pressure signatures are qualitatively similar to those of Figure 3; the
acoustic amplitudes with and without vortex shedding are weaker, and the amplitude
difference is smaller. If the vortex is assumed to be a crude model of a discrete eddy in
a turbulent boundary layer, a larger value of d/h would be representative of turbulent flow
over a small skin step, when the boundary-layer thickness tends to be large compared to h.
The case in which d/h"4 is illustrated in Figure 5. Here the deflection of the incident vortex
is relatively small (about three step heights), and the circular path of the vortex pair
terminates just to the right of the step (near ºt/h+3), the trajectory being reminiscent of
reattachment profiles observed in experiments (Farabee & Casarella 1984, 1986, 1988): the
‘‘eddy’’ formed by the vortex pair is torn apart, C

0
proceeding to the right along the wall and

away from the step, while C is captured within a ‘‘separation bubble’’. Actually, dC/dt
changes sign at ºt/h+5)2, at which time it is ‘‘released’’ from the edge S with a final
circulation C"!1)27C

0
. The vortex then proceeds back towards the step and proper

continuation of the calculation requires that a new vortex be released from S. However, this
latter phase of the motion will not be pursued (being similar to the interactions discussed
below for the backward-facing step), since the interaction of the incident vortex C with the
Figure 5. (a) Vortex trajectories when d/h"4. (b) ———, Nondimensional acoustic pressure
p (x, t)/[o

0
º2M(d/h)3 (l/ Dx D) cos h]; f f f f f , acoustic pressure in the absence of shedding.

0



Figure 6. Shed vortex strength C(t)/C
0
for a forward-facing step when d/h"4. The vortex is ‘‘released’’ from the

edge S of the step at ºt/h+5)2.

868 M. S. HOWE
step is now complete. The acoustic pressures with and without vortex shedding are seen in
Figure 5(b) to be of very similar amplitude, but practically opposite in phase.

The variation of C (t)/C
0

when d/h"4 is shown in Figure 6. The vortex is released at
ºt/h+5)2 as indicated. In all of these cases, the sound is generated principally over an
interval of time &h/º, with characteristic wavelength &h/M<h at the small Mach
numbers for which the present theory is applicable.

3.4. THE BACKWARD-FACING STEP

Typical interactions for a backward-facing step are illustrated in Figures 7 and 8, respec-
tively, for d/h"0)5 and 2. In the absence of shedding, the vortex paths and the acoustic
pressure signatures are identical to their respective counterparts for the forward-facing step
when the time direction is reversed. This is because of our assumption that the span l of the
wall ‘‘wetted’’ by the unsteady flow is small compared to the acoustic wavelength. As lPR,
an observer at a given far-field point x first receives sound from the interaction of the vortex
and step occurring at the closest point of the step (corresponding essentially to the pressures
calculated in this paper), but this is subsequently augmented at progressively increasing
values of the retarded time with sound generated by interactions at increasing spanwise
distances on the step from the observer.

When vortex shedding occurs at a backward-facing step, the incident vortex is displaced
temporarily away from the wall [cf. Figures 7(a, b) and 8(a)], thereby reducing the intensity
of the generated sound. The incident and shed vortex form a vortex pair (with C+!C

0
when ºt/h+1) whose circular trajectory approaches the wall ‘‘downstream’’ of the step,
where the pair split up as the flow ‘‘reattaches’’. The incident vortex continues along a path
parallel to the wall and the shed vortex translates back towards the step within the



Figure 7. (a) Vortex trajectory for d/h"0)5 with no shedding. . (b) Trajectories with shedding. (c) ———,
Nondimensional acoustic pressure p (x, t)/[o

0
º2M(d/h)3(l/ Dx D) cos h]; f f f f f , acoustic pressure in the absence

of shedding.
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separation ‘‘bubble’’. This vortex is ‘‘released’’ before reaching the step (respectively, at
ºt/h+2)8 oand 2)2 in Figures 7 and 8), whereupon a new vortex must be regarded as shed
from S in order to continue the calculation. This secondary shedding has not been modelled
because it occurs long after the interaction of C

0
with the step, and is probably not

important in practice, since at these times surface interactions would be dominated by other
dissipative mechanisms within the separation zone.

When d/h"0)5 the acoustic pressure (Figure 7) is much smaller than in the absence of
shedding, and is ‘‘phase-advanced’’ with respect to the no-shedding pressure signature. The
separate contributions to the radiation from the incident and shed vortices are again both
large, but of opposite sign, and their interference determines the amplitude of the sound.
Figure 8 shows that (in contrast to the forward-facing step) an increase in the initial
stand-off distance to d"2h leaves the relative amplitudes of the acoustic pressures with and



Figure 8. (a) Vortex trajectories when d/h"2. (b) ———, Nondimensional acoustic pressure
p (x, t)/[o

0
º2M(d/h)3 (l/ Dx D) cos h]; f f f f f , acoustic pressure in the absence of shedding.
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without shedding effectively unchanged until the shed vortex is released. The subsequent
sharp increase in the radiation after the release of the shed vortex at ºt/h+2)2 is of no
practical significance, because it represents the sound generated when C returns to the step
with no additional shedding from the corner.

4. CONCLUSIONS

The unsteady drag exerted on a stationary body in incompressible flow can be expressed
entirely in terms of the vorticity distribution. To calculate drag fluctuations produced by
impinging turbulence, it is important to include contributions from vorticity generated at
the surface of the body. At low Mach numbers, the drag is equal to the strength of the
aeroacoustic dipole that dominates the acoustic radiation. The numerical results given in
this paper for an idealized vortex—step interaction suggest that vorticity in the separation
zone significantly modifies the radiation compared to predictions based on a potential flow
‘‘edge scattering’’ modelling of the surface-generated sound. This may be representative of
the kind of interaction that occurs when a large-scale, turbulent structure convects over
forward or backward steps.



TABLE 1
Attenuation of vortex—step interaction

noise by vorticity production

Attenuation (dB)
d/h Forward step Backward step

0)1 11)8 10)1
1 6)3 9)7
2 3)5 9)0
4 1)4 4)8
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The influence of shedding from a step of height h depends on the stand-off distance d of
the vortex from the wall prior to the interaction. Predictions for large or small values of d/h
might be expected to be relevant to sound production by turbulent flow over a step when
the corresponding ratio d/h of the boundary-layer thickness d to the step height is large or
small. Vorticity production affects both the amplitude and the phase of the sound. An
overall estimate of the attenuation of the step noise by the surface-generated vorticity can be
made by comparing the respective net-radiated acoustic energies E

4
and E

0
, say, with and

without vortex shedding. This is done by comparing corresponding values of :t.!9

=
p2(x, t)dt,

where the interaction of the step with the incident vortex is regarded as being negligible
beyond a ‘‘cut-off ’’ time t

.!9
, which is introduced to eliminate large amplitude contributions

from secondary interactions of the shed vorticity with the step (that are suppressed in
practice by viscous dissipation and additional vorticity production at the wall). This
comparison is made in Table 1, where the attenuation !10]log

10
(E

4
/E

0
) (dB) is given for

several values of d/h. The attenuation decreases with increasing d/h (‘‘boundary-layer
thickness’’), but less so for the backward-facing step, indicating that ‘‘reattachment’’ on top
of a forward-facing step is noisier for a given value of d/h.

For a forward-facing step, when d/h is large, Figure 5 and Table 1 indicate that the
amplitudes of the sound with and without shedding are roughly equal, but the phases are
reversed; phase reversal is also evident in Figure 8 for the backward-facing step. These
results suggest that predictions of the frequency spectrum of rough-wall boundary-layer
noise based on the potential flow scattering of the turbulence blocked pressure by very small
roughness elements [see e.g., Howe (1989b)] are probably satisfactory for practical pur-
poses, and justifies in addition recent estimates of the noise generated by turbulent flow over
small fuselage skin steps (Howe 1997).
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